

This project has received funding from the European Union's Seventh Framework Programme for research, technological development and demonstration under Grant Agreement n° 261483

Barts Health NHS Trust

The emerging issue of SCD

Dr Paul Telfer Barts Health NHS Trust Queen Mary University of London

Overview

- Epidemiology of SCD in UK and Europe
- Indications for chronic transfusion
- Iron overload in SCD- pathological effects and monitoring
- Management of iron overload
- Implications for DEEP trial

This project has received funding from the European Union's Seventh Framework Programme for research, technological development and demonstration under Grant Agreement n° 261483

Epidemiology

Predicted HbS allele frequency

Piel et al, Lancet 2013

Trends in at-risk populations 1988 and 2006

■ 1988 ■ 2006

Estimated annual birth rate with SCD

This project has received funding from the European Union's Seventh Framework Programme for research, technological development and demonstration under Grant Agreement n° 261483

Transfusion in SCD

RATIONALE FOR TRANSFUSION

Increase total Hb

- Dilute with HbAA RBC's
- Suppress endogenous HbS production

- Improve blood flow
- Improve tissue oxygen delivery
- Inhibit vaso-occlusion
- Prevent vasculopathy
- Prevent tissue damage

TRANSFUSION OPTIONS

- Acute transfusion
- Chronic transfusion programme
- Simple or exchange transfusion
- Exchange
 - Partial or full volume
 - Manual or automated

Erythrocytapheresis therapy to reduce iron overload

Kim et al, Blood 1994

CarldlanBCT

Spectra Optia' APHERESIS SYSTEM

This project has received funding from the European Union's Seventh Framework Programme for research, technological development and demonstration under Grant Agreement n° 261483

Indications for transfusion

Acute ischaemic stroke L internal carotid artery occlusion

SECONDARY STROKE PREVENTION

- No transfusion
 - recurrence rate 30-70%
- Long-term transfusion HbS 30%
 - recurrence 14-23%
 - 2.2-6.4 episodes per 100 patient years

Pegelow et al, J Pediatr 1995 Scothorn et al, J Pediatr 2002

Stroke recurrence in SWiTCH Ware et al, Blood e-pub Feb 2012

All patients enrolled, 78% of pt years achieved

7 episodes of ischaemic stroke in Hydroxyurea/venesection (10%, 5.6 per 100 pt yrs) None in transfusion/chelation arm Still within margin of non- inferiority

- No difference in LIC between two arms at first interim analysis at 30 months
- Study terminated on grounds of futility for composite primary end point
- 'Based on the SWiTCH trial results, transfusion and chelation remain the better way to manage children with SCA, stroke and iron overload..'

Transcranial Doppler Scanning in children with SCD: Risk classification

Primary prevention of ischaemic stroke in children with abnormal TCD

scan

STOP Study. Adams et al, N Engl J Med 1998.

- 130 randomised, 63 transfusions,
 67 standard care
- 11 CVA (10 ischaemic) in standard care, 1 (1 ischaemic) in transfusion arm
- 92% difference in stroke risk
- Early termination of trial
- Recommendation of TCD screening and transfusion of children with abnormal TCD

Discontinuing prophylactic transfusions used to prevent stroke in sickle cell disease: STOP 2 N Eng J Med 2005; 353: 2769

- Children with abnormal TCD, on transfusions >30 months with normalization of TCD and no severe stenotic lesion on Cerebral MRA
- Composite primary end-point of stroke or reversion to abnormal TCD
- 71 out of planned 100 enrolled
- 41 stop, 38 continue
- 14 reverted to abnormal TCD, 2 had CVA vs none in transfusion arm
- Early termination of trial
- Transfusions cannot be safely stopped even in children considered at low risk

Results with implementation of TCD screening programme

	Setting	Time period	Number pts/pt yrs fu	Rate of abnormal TCD	Rate of Stroke per 100 pt yrs (95%CI)
Bernaudin et al, Blood, e- pub 2010	Paris, regional centre	1998-2008	217/ 1609	30%	0.19 (0.04-0.5)
Enninful- Eghan et al, Journal of Pediatrics 2010	Philadelphia, regional centre	1998-2006	530 /3578	12.4 %	0.06 (0.01-0.2)
Telfer et al, 2011	E. London and Essex, Regional centre	2001-2010	451/ 4673	13.9 %	0.13 (0.05-0.2)

Silent cerebral infarction

Official Report-Normal

Official Report No- Change

Silent Cerebral Infarct Transfusion Trial: Multi-Center Clinical Trial

Silent Infarct Transfusion Study

• Primary Hypothesis:

Prophylactic blood transfusion therapy in children with silent cerebral infarcts will result in at least **86%** reduction in the proportion of patients with clinically evident strokes, new or progressive silent cerebral infarcts

Other indications for regular transfusion

- Prevention of acute painful crisis and ACS (Grade B)
- Severe anaemia and renal dysfunction (Grade C)
- Maintenance of transplant renal function postallograft (Grade C)
- Recurrent lower limb ulceration (Grade C)
- Recurrent priapism (Grade C)
- Avascular necrosis of hips in childhood (Grade C)

Increasing use of blood transfusions in adult patients

- 41% of all patients received ≥ 1 unit blood in 10 years
- Significant increase in blood usage both for planned and acute sickle-related
 complications

More "indications": renal failure, ulcers, lung disease, priapism

Drasar E et al. Br J Haematol. 2011;152:766-70.

This project has received funding from the European Union's Seventh Framework Programme for research, technological development and demonstration under Grant Agreement n° 261483

Iron overload in SCD

Iron overload in SCD

- Reduced incidence of cardiac and endocrine complications compared to TM
- These complications may become more common in heavily transfused older patients
- Liver damage is multifactorial

Chronic liver disease in HbSS, 'hepatopathy'

Pathophysiology

- Sequestration
- Vaso-occlusion
- Iron overload
- Viral hepatitis

Measuring iron overload in SCD

- Liver iron validated against R2* (Hankin et al, Blood 2009)
- R2 (Ferriscan) generally used in UK for LIC
- Poor correlation of SF with LIC
- Annual trends in SF and LIC more important
- Cardiac iron loading is less common than in TM

Problems with serum ferritin

Kwiatkowski et al, Am J Haematol. 2011

Correlation with liver iron

Correlation with duration of transfusions

Iron chelation-licensing in SCD

- **Deferiprone**: Not licensed
- Desferrioxamine: Iron overload ...primary and secondary haemochromatosis including thalassaemia and transfusional haemosiderosis; in patients in whom concomitant disorders (e.g. severe anaemia, hypoproteinaemia, renal or cardiac failure) preclude phlebotomy.....

Iron chelation - licensing in SCD

- Deferasirox (EXJADE) the treatment of chronic iron overload due to blood transfusions when deferoxamine therapy is contraindicated or inadequate in the following patient groups:
- in patients with other anaemias aged 2 years and older.

Results with deferasirox- long-term follow up of Phase II trial patients

Vichinsky et al, B J Haem. 2011; 154: 387-397

Contents lists available at ScienceDirect

Blood Cells, Molecules and Diseases

journal homepage: www.elsevier.com/locate/bcmd

Deferiprone versus Deferoxamine in Sickle Cell Disease: Results from a 5year long-term Italian multi-center randomized clinical trial

Giusi Calvaruso ^a, Angela Vitrano ^b, Rosario Di Maggio ^a, Samir Ballas ^c, Martin H. Steinberg ^d, Paolo Rigano ^a, Massimiliano Sacco ^a, Paul Telfer ^e, Disma Renda ^a, Rita Barone ^a, Aurelio Maggio ^{a,*}, The Investigators of the Multicenter Randomized Clinical Trial of Deferiprone versus Deferoxamine in Sickle-Cell-Disease

^a UniterOperativa Complessa Ernatologia II, AOR. Villa Sofia-V. Cervello, Palermo, Italy ^b Dipartimento di Science Economiche, Aziendale el Satastiche. Università di Palermo, Italy ^b Divissi on Hemanology, Cintera Euroadino. Departmento of Mediche, Jeferson Medical College, Thomas Jefferson University, Philadelphia, PA, USA ^d Center of Excelhence in Sciele Cell Discose. Department of Pediatrics, Patrohogy and Laboratory Medicine, Boston Medical Center, Boston, MA, USA ^d Department of Hematology, The Royal London University. Indone, University, Indone Medical Center, Boston, MA, USA ^d Department of Hematology, The Royal London (Divisit Ringdom

Means of serum ferritin levels (µg/l) during a 5-year multi-center randomized clinical trial
comparing Deferiprone (DFP) versus Deferoxamine (DFO) treatment in Sickle-Cell-Disease.

Years	DFP mean \pm sd (n)	DFO mean \pm sd (n)
Baseline 1 2 3	$\begin{array}{r} 1440.13 \pm 712.80 \ (29) \\ 1033.00 \pm 737.41 \ (19) \\ 1076.80 \pm 897.51 \ (15) \\ 580.10 \pm 581.56 \ (10) \end{array}$	$\begin{array}{r} 1726.03 \pm 694.01 \ (29) \\ 1522.64 \pm 954.98 \ (22) \\ 1100.05 \pm 798.61 \ (19) \\ 1127.68 \pm 516.42 \ (16) \end{array}$
4 5	$\begin{array}{r} 330.10 \pm 331.30(10) \\ 438.22 \pm 320.81(9) \\ 695.00 \pm 597.74(7) \end{array}$	$\begin{array}{c} 1127.08 \pm 310.42 \ (10) \\ 1078.26 \pm 356.31 \ (15) \\ 1333.85 \pm 871.74 \ (14) \end{array}$

Conclusions for DEEP trial

- Increasing numbers of children with SCD on regular transfusion
- Additional chelation options are needed in addition to deferasirox
- Licensing of deferiprone for children with SCD would enhance options
- End points of SF and cardiac iron are unlikely to be as sensitive in SCD as in TM
- There are likely to be more SAE's reported in SCD children

